Human adaptation to arsenic-rich environments.

نویسندگان

  • Carina M Schlebusch
  • Lucie M Gattepaille
  • Karin Engström
  • Marie Vahter
  • Mattias Jakobsson
  • Karin Broberg
چکیده

Adaptation drives genomic changes; however, evidence of specific adaptations in humans remains limited. We found that inhabitants of the northern Argentinean Andes, an arid region where elevated arsenic concentrations in available drinking water is common, have unique arsenic metabolism, with efficient methylation and excretion of the major metabolite dimethylated arsenic and a less excretion of the highly toxic monomethylated metabolite. We genotyped women from this population for 4,301,332 single nucleotide polymorphisms (SNPs) and found a strong association between the AS3MT (arsenic [+3 oxidation state] methyltransferase) gene and mono- and dimethylated arsenic in urine, suggesting that AS3MT functions as the major gene for arsenic metabolism in humans. We found strong genetic differentiation around AS3MT in the Argentinean Andes population, compared with a highly related Peruvian population (FST = 0.014) from a region with much less environmental arsenic. Also, 13 of the 100 SNPs with the highest genome-wide Locus-Specific Branch Length occurred near AS3MT. In addition, our examination of extended haplotype homozygosity indicated a selective sweep of the Argentinean Andes population, in contrast to Peruvian and Colombian populations. Our data show that adaptation to tolerate the environmental stressor arsenic has likely driven an increase in the frequencies of protective variants of AS3MT, providing the first evidence of human adaptation to a toxic chemical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The efficiency of pistacia atlantica extract as a natural coagulant aid on arsenic removal from aquatic environments

Background: Arsenic has been considered as one of the most hazardous element for the living organisms and its presence in natural waters, can result in serious health and environmental problems. In this study, Pistacia Atlantica seed extract ability in a batch system to remove arsenate from aqueous solutions was investigated. Materials and methods: This study is an experimental study that was ...

متن کامل

A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments-including ground and surface waters-from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic...

متن کامل

Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas

Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we...

متن کامل

The microbial arsenic cycle in Mono Lake, California.

Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryo...

متن کامل

The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni

Arsenic, a toxic metalloid, exists in the natural environment and its organic form is approved for use as a feed additive for animal production. As a major foodborne pathogen of animal origin, Campylobacter is exposed to arsenic selection pressure in the food animal production environments. Previous studies showed that Campylobacter isolates from poultry were highly resistant to arsenic compoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 32 6  شماره 

صفحات  -

تاریخ انتشار 2015